Mengenal Aljabar Boolean dan karnaugh map
Aljabar Boolean adalah matematika yang digunakan untuk menganalisis dan menyederhanakan Gerbang Logika pada Rangkaian-rangkaian Digital Elektronika. Boolean pada dasarnya merupakan Tipe data yang hanya terdiri dari dua nilai yaitu “True” dan “False” atau “Tinggi” dan “Rendah” yang biasanya dilambangkan dengan angka “1” dan “0” pada Gerbang Logika ataupun bahasa pemrograman komputer.
Dengan menggunakan Hukum Aljabar Boolean ini, kita dapat mengurangi dan menyederhanakan Ekspresi Boolean yang kompleks sehingga dapat mengurangi jumlah Gerbang Logika yang diperlukan dalam sebuah rangkaian Digital Elektronika.
ibawah ini terdapat 6 tipe Hukum yang berkaitan dengan Hukum Aljabar Boolean
Hukum Komutatif (Commutative Law)
Hukum Komutatif menyatakan bahwa penukaran urutan variabel atau sinyal Input tidak akan berpengaruh terhadap Output Rangkaian Logika.
Contoh :
Perkalian (Gerbang Logika AND)
X.Y = Y.X
Penjumlahan (Gerbang Logika OR)
X+Y = Y+X
Catatan : Pada penjumlahan dan perkalian, kita dapat menukarkan posisi variabel atau dalam hal ini adalah sinyal Input, hasilnya akan tetap sama atau tidak akan mengubah keluarannya.
Hukum Asosiatif (Associative Law)
Hukum Asosiatif menyatakan bahwa urutan operasi logika tidak akan berpengaruh terhadap Output Rangkaian Logika.
Contoh :
Perkalian (Gerbang Logika AND)
W . (X . Y) = (W . X) . Y
Penjumlahan (Gerbang Logika OR)
W + (X + Y) = (W + X) + Y
Sedangkan Karnaugh Map atau K-Map adalah suatu teknik penyederhanaan fungsi logika dengan cara pemetaan. K-Map terdiri dari kotak-kotak yang jumlahnya terdiri dari jumlah variable dan fungsi logika atau jumlah inputan dari rangkaian logika yang sedang kita hitung.
Langkah – langkah pemetaan K-Map secara umum :
- Menyusun aljabar Boolean terlebih dahulu
- Menggambar rangkaian digital
- Membuat Table Kebenarannya
- Merumuskan Tabel Kebenarannya
- Lalu memasukkan rumus Tabel Kebenaran ke K-Map (Kotak-kotak)
Penyederhanaan Dua Variabel
Catatan : Bar = ‘
Tabel dari K-Map 2 variabel adalah seperti dibawah ini
Contoh Soal :
H = AB + A’B+AB’
Maka cara pengerjaanya seperti dibawah ini
Bar (‘) atau aksen biasanya ditulis kedalam angka 0 sedangkan angka 1 adalah tanpa Bar aksen.
Dan dapat dipermudah lagi menjadi dibawah ini :
Yang dapat disederhanakan dalam K-Map hanya 2 / kelipatan 2 dari kotak yang berdempetan dan sedangkan jika seperti kotak diatas maka penyderhanaannya:
Karena kolom ber angka 1 dan baris ber angka 1 memenuhi setiap garisnya, maka dapat disimpulkan kalau H = AB + A’B+AB’ K-Map nya adalah AB/BA
Penyederhanaan Tiga Variabel
Catatan : Bar = ‘
Tabel dari K-Map 3 variabel adalah seperti dibawah ini
Contoh Soal
H = ABC + A’BC+A’B’C+AB’C
Maka cara pengerjaanya seperti dibawah ini
Dan dapat dipermudah lagi menjadi dibawah ini
Sekarang kita lihat, karena yang memenuhi setiap kotaknya adalah baris 01 dan 11 sedangkan simbol 01 artinya adalah (B’C) dan 11 artinya adalah (BC) dan simbol yang tidak ada aksen nya hanya C, maka H = ABC + A’BC+A’B’C+AB’C adalah C.
Penyederhanaan 4 variabel
Catatan : Bar = ‘
Tabel dari K-Map 4 variabel adalah seperti dibawah ini :
Contoh Soal
H = ABCD + ABCD’+AB’CD+ABC’D’
Maka cara pengerjaanya seperti dibawah ini
Dan dapat dipermudah lagi menjadi dibawah ini :
Karena yang ada angka 1 nya ada di kolom dan baris 1100, 1111, 1110 dan 1011, yaitu AB, ABCD, ABC dan ACD maka jika kita eliminasi dengan cara mengambil huruf yang sama saja menjadi AB + ABC + ACD.
Komentar
Posting Komentar